OTML2021 NeurIPS 2021 Workshop
Menu
Home
Call for Contributions
Schedule
Papers
Committee
Optimal Transport and Machine Learning
NeurIPS 2021 Workshop. 13th of December 2021
List of Accepted Papers
Orals
Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing
. Zaid Harchaoui, Lang Liu, Soumik Pal
Entropic estimation of optimal transport maps
. Aram-Alexandre Pooladian, Jonathan Niles-Weed
Implicit Riemannian Concave Potential Maps
. Danilo Jimenez Rezende, Sebastien Racaniere
Spotlights
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Network
. David Alvarez-Melis, Yair Schiff, Youssef Mroueh
Learning Revenue-Maximizing Auctions With Differentiable Matching
. Michael Curry, Uro Cornelius Lyi, Tom Goldstein, John P Dickerson
Factored couplings in multi-marginal optimal transport via difference of convex programming
. Quang Huy Tran, Hicham Janati, Ievgen Redko, Rémi Flamary, Nicolas Courty
Sinkhorn EM: An Expectation-Maximization algorithm based on entropic optimal transport
. Gonzalo E. Mena, Amin Nejatbakhsh, Erdem Varol, Jonathan Niles-Weed
Subspace Detours Meet Gromov-Wasserstein
. Clément Bonet, Nicolas Courty, Fançois Septier, Lucas Drumetz
Input Convex Gradient Networks
. Jack Richter-Powell, Jonathan Peter Lorraine, Brandon Amos
Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs
. Meyer Scetbon, Gabriel Peyré, Marco Cuturi
Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe. Thibault Sejourne, François-Xavier Vialard, Gabriel Peyré
Posters
Optimal Transport losses and Sinkhorn algorithm with general convex regularization
. Augusto Gerolin, Simone Di Marino.
Multistage Monge Kantorovich Problem applied to optimal ecological transition
. Clara Macedo Lage, Emmanuel Gobet.
Measuring association with Wasserstein distances
. Johannes Wiesel
Dual Regularized Optimal Transport
. Rishi Sonthalia, Anna Gilbert
Towards interpretable contrastive word mover’s embedding
. Ruijie Jiang, Julia Gouvea, Eric Miller, David Hammer, Shuchin Aeron
Efficient estimates of optimal transport via low-dimensional embeddings
. Patric Fulop, Vincent Danos
Likelihood Training of Schrödinger Bridges using Forward-Backward SDEs Theory
. Tianrong Chen, Guan-Horng Liu, Evangelos Theodorou
Wasserstein Adversarially Regularized Graph Autoencoder
. Huidong Liang, Junbin Gao
Sliced Multi-Marginal Optimal Transport
. Samuel Cohen, Alexander Terenin, Yannik Pitcan, Brandon Amos, Marc Peter Deisenroth, K S Sesh Kumar
On Combining Expert Demonstrations in Imitation Learning via Optimal Transport
. Ilana Sebag, Samuel Cohen, Marc Peter Deisenroth
Towards an FFT for measures. Paul Catala, Mathias Hockmann, Stefan Kunis, Markus Wageringel
Variational Wasserstein gradient flow
. Jiaojiao Fan, Amirhossein Taghvaei, Yongxin Chen
A Central Limit Theorem for Semidiscrete Wasserstein Distances. Alberto Gonzalez Sanz, Loubes Jean-Michel, Eustasio del Barrio
On the complexity of the optimal transport problem with graph-structured cost
. Jiaojiao Fan, Isabel Haasler, Johan Karlsson, Yongxin Chen
Learning Single-Cell Perturbation Responses using Neural Optimal Transport. Charlotte Bunne, Stefan Stark, Gabriele Gut, Andreas Krause, Gunnar Ratsch, Lucas Pelkmans, Kjong Lehmann
Cross-Domain Lossy Compression as Optimal Transport with an Entropy Bottleneck
. Huan Liu, George Zhang, Jun Chen, Ashish J. Khisti
Gradient flows on graphons: existence, convergence, continuity equations
. Sewoong Oh, Soumik Pal, Raghav Somani, Raghav Tripathi
Linear Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport
. Vladimir R Kostic, Saverio Salzo, Massimiliano Pontil